86 lines
2.8 KiB
Python
86 lines
2.8 KiB
Python
import os
|
|
import torch
|
|
import torchvision
|
|
import torchvision.transforms as transforms
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import datasets, models
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from tqdm import tqdm # https://tqdm.github.io/
|
|
|
|
# https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
|
|
|
|
# ======= Settings =======
|
|
DATA_DIR = "./CIEDGE"
|
|
BATCH_SIZE = 16
|
|
NUM_CLASSES = 2
|
|
NUM_EPOCHS = 10
|
|
LEARNING_RATE = 1e-4
|
|
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
# ======= Transforms =======
|
|
transform = transforms.Compose([
|
|
transforms.Resize((224, 224)), # Ensure fixed input size
|
|
transforms.ToTensor(),
|
|
transforms.Normalize([0.485, 0.456, 0.406], # ImageNet mean
|
|
[0.229, 0.224, 0.225]) # ImageNet std
|
|
])
|
|
|
|
# ======= Load Data =======
|
|
train_dataset = datasets.ImageFolder(os.path.join(DATA_DIR, "train"), transform=transform)
|
|
test_dataset = datasets.ImageFolder(os.path.join(DATA_DIR, "test"), transform=transform)
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2, pin_memory=True)
|
|
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=2, pin_memory=True)
|
|
|
|
# ======= Load Model =======
|
|
model = models.resnet18(pretrained=True)
|
|
model.fc = nn.Linear(model.fc.in_features, NUM_CLASSES)
|
|
model = model.to(DEVICE)
|
|
|
|
# ======= Loss and Optimizer =======
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
|
|
|
# ======= Training Loop =======
|
|
for epoch in range(NUM_EPOCHS):
|
|
model.train()
|
|
running_loss = 0.0
|
|
correct, total = 0, 0
|
|
|
|
loop = tqdm(train_loader, desc=f"Epoch {epoch+1}/{NUM_EPOCHS}")
|
|
for inputs, labels in loop:
|
|
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
|
inputs = inputs.contiguous() # Ensure tensor layout for MIOpen
|
|
|
|
optimizer.zero_grad()
|
|
outputs = model(inputs)
|
|
loss = criterion(outputs, labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
running_loss += loss.item()
|
|
_, predicted = torch.max(outputs, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
loop.set_postfix(loss=loss.item(), acc=100. * correct / total)
|
|
|
|
# ======= Evaluation =======
|
|
model.eval()
|
|
correct, total = 0, 0
|
|
with torch.no_grad():
|
|
for inputs, labels in test_loader:
|
|
inputs, labels = inputs.to(DEVICE), labels.to(DEVICE)
|
|
inputs = inputs.contiguous()
|
|
outputs = model(inputs)
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
total += labels.size(0)
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
print(f"Test Accuracy: {100 * correct / total:.2f}%")
|
|
|
|
# ======= Save Model =======
|
|
torch.save(model.state_dict(), "resnet18_ciedge.pth")
|
|
#
|