Files
TeraHz/utils/venv/lib/python3.6/site-packages/matplotlib/tests/test_path.py
2019-02-03 13:40:10 +01:00

244 lines
7.0 KiB
Python

import copy
import numpy as np
from numpy.testing import assert_array_equal
import pytest
from matplotlib.path import Path
from matplotlib.patches import Polygon
from matplotlib.testing.decorators import image_comparison
import matplotlib.pyplot as plt
from matplotlib import transforms
def test_empty_closed_path():
path = Path(np.zeros((0, 2)), closed=True)
assert path.vertices.shape == (0, 2)
assert path.codes is None
def test_readonly_path():
path = Path.unit_circle()
def modify_vertices():
path.vertices = path.vertices * 2.0
with pytest.raises(AttributeError):
modify_vertices()
def test_point_in_path():
# Test #1787
verts2 = [(0, 0), (0, 1), (1, 1), (1, 0), (0, 0)]
path = Path(verts2, closed=True)
points = [(0.5, 0.5), (1.5, 0.5)]
ret = path.contains_points(points)
assert ret.dtype == 'bool'
assert np.all(ret == [True, False])
def test_contains_points_negative_radius():
path = Path.unit_circle()
points = [(0.0, 0.0), (1.25, 0.0), (0.9, 0.9)]
expected = [True, False, False]
result = path.contains_points(points, radius=-0.5)
assert np.all(result == expected)
def test_point_in_path_nan():
box = np.array([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]])
p = Path(box)
test = np.array([[np.nan, 0.5]])
contains = p.contains_points(test)
assert len(contains) == 1
assert not contains[0]
def test_nonlinear_containment():
fig, ax = plt.subplots()
ax.set(xscale="log", ylim=(0, 1))
polygon = ax.axvspan(1, 10)
assert polygon.get_path().contains_point(
ax.transData.transform_point((5, .5)), ax.transData)
assert not polygon.get_path().contains_point(
ax.transData.transform_point((.5, .5)), ax.transData)
assert not polygon.get_path().contains_point(
ax.transData.transform_point((50, .5)), ax.transData)
@image_comparison(baseline_images=['path_clipping'],
extensions=['svg'], remove_text=True)
def test_path_clipping():
fig = plt.figure(figsize=(6.0, 6.2))
for i, xy in enumerate([
[(200, 200), (200, 350), (400, 350), (400, 200)],
[(200, 200), (200, 350), (400, 350), (400, 100)],
[(200, 100), (200, 350), (400, 350), (400, 100)],
[(200, 100), (200, 415), (400, 350), (400, 100)],
[(200, 100), (200, 415), (400, 415), (400, 100)],
[(200, 415), (400, 415), (400, 100), (200, 100)],
[(400, 415), (400, 100), (200, 100), (200, 415)]]):
ax = fig.add_subplot(4, 2, i+1)
bbox = [0, 140, 640, 260]
ax.set_xlim(bbox[0], bbox[0] + bbox[2])
ax.set_ylim(bbox[1], bbox[1] + bbox[3])
ax.add_patch(Polygon(
xy, facecolor='none', edgecolor='red', closed=True))
@image_comparison(baseline_images=['semi_log_with_zero'], extensions=['png'],
style='mpl20')
def test_log_transform_with_zero():
x = np.arange(-10, 10)
y = (1.0 - 1.0/(x**2+1))**20
fig, ax = plt.subplots()
ax.semilogy(x, y, "-o", lw=15, markeredgecolor='k')
ax.set_ylim(1e-7, 1)
ax.grid(True)
def test_make_compound_path_empty():
# We should be able to make a compound path with no arguments.
# This makes it easier to write generic path based code.
r = Path.make_compound_path()
assert r.vertices.shape == (0, 2)
@image_comparison(baseline_images=['xkcd'], extensions=['png'],
remove_text=True)
def test_xkcd():
np.random.seed(0)
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)
with plt.xkcd():
fig, ax = plt.subplots()
ax.plot(x, y)
@image_comparison(baseline_images=['xkcd_marker'], extensions=['png'],
remove_text=True)
def test_xkcd_marker():
np.random.seed(0)
x = np.linspace(0, 5, 8)
y1 = x
y2 = 5 - x
y3 = 2.5 * np.ones(8)
with plt.xkcd():
fig, ax = plt.subplots()
ax.plot(x, y1, '+', ms=10)
ax.plot(x, y2, 'o', ms=10)
ax.plot(x, y3, '^', ms=10)
@image_comparison(baseline_images=['marker_paths'], extensions=['pdf'],
remove_text=True)
def test_marker_paths_pdf():
N = 7
plt.errorbar(np.arange(N),
np.ones(N) + 4,
np.ones(N))
plt.xlim(-1, N)
plt.ylim(-1, 7)
@image_comparison(baseline_images=['nan_path'], style='default',
remove_text=True, extensions=['pdf', 'svg', 'eps', 'png'])
def test_nan_isolated_points():
y0 = [0, np.nan, 2, np.nan, 4, 5, 6]
y1 = [np.nan, 7, np.nan, 9, 10, np.nan, 12]
fig, ax = plt.subplots()
ax.plot(y0, '-o')
ax.plot(y1, '-o')
def test_path_no_doubled_point_in_to_polygon():
hand = np.array(
[[1.64516129, 1.16145833],
[1.64516129, 1.59375],
[1.35080645, 1.921875],
[1.375, 2.18229167],
[1.68548387, 1.9375],
[1.60887097, 2.55208333],
[1.68548387, 2.69791667],
[1.76209677, 2.56770833],
[1.83064516, 1.97395833],
[1.89516129, 2.75],
[1.9516129, 2.84895833],
[2.01209677, 2.76041667],
[1.99193548, 1.99479167],
[2.11290323, 2.63020833],
[2.2016129, 2.734375],
[2.25403226, 2.60416667],
[2.14919355, 1.953125],
[2.30645161, 2.36979167],
[2.39112903, 2.36979167],
[2.41532258, 2.1875],
[2.1733871, 1.703125],
[2.07782258, 1.16666667]])
(r0, c0, r1, c1) = (1.0, 1.5, 2.1, 2.5)
poly = Path(np.vstack((hand[:, 1], hand[:, 0])).T, closed=True)
clip_rect = transforms.Bbox([[r0, c0], [r1, c1]])
poly_clipped = poly.clip_to_bbox(clip_rect).to_polygons()[0]
assert np.all(poly_clipped[-2] != poly_clipped[-1])
assert np.all(poly_clipped[-1] == poly_clipped[0])
def test_path_to_polygons():
data = [[10, 10], [20, 20]]
p = Path(data)
assert_array_equal(p.to_polygons(width=40, height=40), [])
assert_array_equal(p.to_polygons(width=40, height=40, closed_only=False),
[data])
assert_array_equal(p.to_polygons(), [])
assert_array_equal(p.to_polygons(closed_only=False), [data])
data = [[10, 10], [20, 20], [30, 30]]
closed_data = [[10, 10], [20, 20], [30, 30], [10, 10]]
p = Path(data)
assert_array_equal(p.to_polygons(width=40, height=40), [closed_data])
assert_array_equal(p.to_polygons(width=40, height=40, closed_only=False),
[data])
assert_array_equal(p.to_polygons(), [closed_data])
assert_array_equal(p.to_polygons(closed_only=False), [data])
def test_path_deepcopy():
# Should not raise any error
verts = [[0, 0], [1, 1]]
codes = [Path.MOVETO, Path.LINETO]
path1 = Path(verts)
path2 = Path(verts, codes)
copy.deepcopy(path1)
copy.deepcopy(path2)
@pytest.mark.parametrize('offset', range(-720, 361, 45))
def test_full_arc(offset):
low = offset
high = 360 + offset
path = Path.arc(low, high)
mins = np.min(path.vertices, axis=0)
maxs = np.max(path.vertices, axis=0)
np.testing.assert_allclose(mins, -1)
assert np.allclose(maxs, 1)